目的 针对超声速来流条件下的空腔噪声问题,提出一种基于前壁谐振腔的噪声抑制方法,并探究超声速来流条件下,上述前壁谐振腔的3个参数对空腔噪声抑制效果的影响。方法 采用大涡模拟和计算气动声学相结合的方法对超声速来流条件下开式空腔结构的气动噪声进行数值计算研究,详细分析空腔内的流场特性和声场特性,并将数值计算所得噪声频谱与试验结果进行对比分析,全面验证数值计算方法的准确性。此外,提出一种基于前壁谐振腔的空腔噪声抑制方法。结果 超声速来流条件下,在空腔前壁合理设计谐振腔可有效降低空腔噪声的总声压级幅值、各阶模态声压级幅值和随机噪声声压级幅值,能显著改善空腔内的强噪声环境,有效避免空腔结构及腔内武器装备发生振动及声疲劳破坏,并且前壁谐振腔的深度l、前缘唇厚t和开口大小d均会对其噪声抑制效果产生影响。结论 在实际工程应用时,应根据上述参数对空腔噪声抑制效果的影响进行综合权衡设计,力求使其噪声抑制效果达到最佳。
Abstract
The work aims to propose a noise suppression method based on the front-wall resonant cavity to address the issue of cavity noise under supersonic flow conditions, and explore the influence of the three parameters of the front-wall resonant cavity on the cavity noise suppression effect under supersonic flow conditions. A numerical investigation combining Large Eddy Simulation (LES) and Computational Aeroacoustics (CAA) was conducted to study the aerodynamic noise characteristics of open cavity structures under supersonic flow conditions. Detailed analyses were performed on both the flow field and acoustic field characteristics within the cavity, with comparative validation against experimental results demonstrating the accuracy of the numerical methodology. Furthermore, a novel noise suppression approach utilizing front-wall resonant cavity was proposed. The study revealed that properly designed front-wall resonant cavity in supersonic flow could effectively reduce the overall sound pressure level (OASPL), modal sound pressure level (SPL) amplitudes, and broadband SPL amplitudes within the cavity. This suppression method significantly improved the intense acoustic environment, effectively preventing vibration and acoustic fatigue failure in cavity structures and internal weapon systems. Critical design parameters including resonator depth (l), leading-edge lip thickness (t), and aperture size (d) were identified as key factors influencing noise suppression performance. For optimal engineering applications, comprehensive trade-offs between these parameters should be carefully considered during design optimization to achieve the maximum noise attenuation effect.
关键词
空腔噪声 /
超声速 /
前壁谐振腔 /
噪声抑制 /
大涡模拟 /
总声压级
Key words
cavity noise /
supersonic speed /
front-wall resonant cavity /
noise suppression /
large eddy simulation /
overall sound pressure level
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHAW L, CLARK R, TALMADGE D.F-111 Generic Weapons Bay Acoustic Environment[J]. Journal of Aircraft, 1988, 25(2): 147-153.
[2] HELLER H, DELFS J.Cavity Pressure Oscillations: The Generating Mechanism Visualized[J]. Journal of Sound and Vibration, 1996, 196(2): 248-252.
[3] LEE B H K. Effect of Captive Stores on Internal Weapons Bay Floor Pressure Distributions[J]. Journal of Aircraft, 2010, 47(2): 732-736.
[4] LAWSON S J, BARAKOS G N.Review of Numerical Simulations for High-Speed, Turbulent Cavity Flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216.
[5] SCHMIT R F, GROVE J E, SEMMELMAYER F, et al.Nonlinear Feedback Mechanisms Inside a Rectangular Cavity[J]. AIAA Journal, 2014, 52(10): 2127-2142.
[6] 王芳丽, 王一丁, 童明波, 等. 超音速空腔噪声非线性数值模拟及影响因素研究[J]. 振动工程学报, 2017, 30(3): 483-492.
WANG F L, WANG Y D, TONG M B, et al.Nonlinear Numerical Simulation and Effects of Cavity Noise in Supersonic[J]. Journal of Vibration Engineering, 2017, 30(3): 483-492.
[7] FRANKE M, CARR D.Effect of Geometry on Open Cavity Flow-Induced Pressure Oscillations[C]//2nd Aeroacoustics Conference. Hampton, VA. Reston, Virginia: AIAA, 1975: 492.
[8] PEREIRA J C F, SOUSA J M M. Influence of Impingement Edge Geometry on Cavity Flow Oscillations[J]. AIAA Journal, 1994, 32(8): 1737-1740.
[9] RONA A, CHEN X, ZHANG X, et al.Control of Cavity Flow Oscillation through Leading Edge Flow Modification[C]// Proceedings of 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1998.
[10] SINHA N, DASH S, CHIDAMBARAM N, et al.A Perspective on the Simulation of Cavity Aeroacoustics[C]// 36th AIAA Aerospace Sciences Meeting and Exhibit. Virginia: AIAA, 1998: 286.
[11] RUBIO G, DE ROECK W, BAELMANS M, et al.Numerical Identification of Flow-Induced Oscillation Modes in Rectangular Cavities Using Large Eddy Simulation[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 851-866.
[12] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010: 1-157.
YANG D G.Study on Aeroacoustic Characteristics and Noise Suppression of Embedded Weapon Cabin[D]. Mianyang: China Aerodynamics Research and Development Center, 2010: 1-157.
[13] 但佳壁, 郑四发, 刘海涛, 等. 基于大涡模拟和声比拟的喷射流噪声时域预测方法[J]. 振动工程学报, 2016, 29(3): 504-510.
DAN J B, ZHENG S F, LIU H T, et al.Time-Domain Prediction of Jet Flow Noise by LES/AA Method[J]. Journal of Vibration Engineering, 2016, 29(3): 504-510.
[14] 谷正气, 王宁, 汪怡平, 等. 基于空腔流动特性的汽车侧窗风振噪声控制方法研究[J]. 振动工程学报, 2014, 27(3): 408-415.
GU Z Q, WANG N, WANG Y P, et al.Control of Wind Buffeting Noise in Side-Window of Automobiles Based on Cavity Flow Characteristics[J]. Journal of Vibration Engineering, 2014, 27(3): 408-415.
[15] PANIGRAHI C, VAIDYANATHAN A, NAIR M T.Effects of Subcavity in Supersonic Cavity Flow[J]. Physics of Fluids, 2019, 31(3): 036101.
[16] HELLER H, BLISS D.Aerodynamically Induced Resonance in Rectangular Cavities—Physical Mechanisms and Suppression Concepts[R]. AFFDL-TR-74-133, 1975.
[17] ZHANG X, RONA A, EDWARDS J A.An Observation of Pressure Waves around a Shallow Cavity[J]. Journal of Sound and Vibration, 1998, 214(4): 771-778.
[18] ZHUANG N.Experimental Investigation of Supersonic Cavity Flows and Their Control[D]. Tallahassee: The Florida State University, 2007.
[19] TAM C J, ORKWIS P D, DISIMILE P J.Algebraic Turbulence Model Simulations of Supersonic Open-Cavity Flow Physics[J]. AIAA Journal, 1996, 34(11): 2255-2260.
[20] LI W P, NONOMURA T, FUJII K.Mechanism of Controlling Supersonic Cavity Oscillations Using Upstream Mass Injection[J]. Physics of Fluids, 2013, 25(8): 086101.
[21] MOON S, GAI S, KLEINE H, et al.Supersonic Flow over Straight Shallow Cavities Including Leading and Trailing Edge Modifications[C]// Proceedings of 28th AIAA Applied Aerodynamics Conference. Chicago: AIAA, 2010.
[22] CHANDRA B U, CHAKRAVARTHY S R.Experimental Investigation of Cavity-Induced Acoustic Oscillations in Confined Supersonic Flow[J]. Journal of Fluids Engineering, 2005, 127(4): 761-769.